Additive problems involving squares, cubes and almost primes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Approximation by Cubes of Primes and an Almost Prime

Let λ1, . . . , λs be non-zero with λ1/λ2 irrational and let S be the set of values attained by the form λ1x 3 1 + · · ·+ λsxs when x1 has at most 6 prime divisors and the remaining variables are prime. In the case s = 4, we establish that most real numbers are “close” to an element of S. We then prove that if s = 8, S is dense on the real line.

متن کامل

Diophantine Approximation by Cubes of Primes and an Almost Prime II

Let λ1, . . . , λ4 be non-zero with λ1/λ2 irrational and negative, and let S be the set of values attained by the form λ1x 3 1 + · · · + λ4x4 when x1 has at most 3 prime divisors and the remaining variables are prime. We prove that most real numbers are close to an element of S.

متن کامل

Small Gaps between Primes or Almost Primes

Let pn denote the nth prime. Goldston, Pintz, and Yıldırım recently proved that lim inf n→∞ (pn+1 − pn) log pn = 0. We give an alternative proof of this result. We also prove some corresponding results for numbers with two prime factors. Let qn denote the nth number that is a product of exactly two distinct primes. We prove that lim inf n→∞ (qn+1 − qn) ≤ 26. If an appropriate generalization of ...

متن کامل

Surfaces via Almost - Primes

Based on the result on derived categories on K3 surfaces due to Mukai and Orlov and the result concerning almost-prime numbers due to Iwaniec, we remark the following facts: (1) For any given positive integer N , there are N (mutually non-isomorphic) projective complex K3 surfaces such that their Picard groups are not isomorphic but their transcendental lattices are Hodge isometric, or equivale...

متن کامل

Sums of Primes and Squares of Primes in Short Intervals

Let H2 denote the set of even integers n 6≡ 1 (mod 3). We prove that when H ≥ X, almost all integers n ∈ H2 ∩ (X,X + H] can be represented as the sum of a prime and the square of a prime. We also prove a similar result for sums of three squares of primes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1972

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-21-1-413-422